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CONTROL OF THE SHAPE OF PHASE TRANSITION FRONTS DURING ZONE MELTING 

O. M. Lavrent'eva UDC 536.42 

In order to prepare single crystals there is extensive use of the method of zone melting 
in which a long specimen is drawn through a heater [i, 2]. As a result of this, a molten 
zone occurs between the rod of polycrystalline material being consumed and the single crystal 
formed. Variants of the method differ in the way of heating and cooling, and also whether 
the specimen is contained in a crucible or not. The quality of the crystal obtained depends 
on the shape of the phase transition surfaces arising, which is determined by the boundary 
regime at the ingot surface. The problem of determining the boundary regime providing a 
specified (optimum in the sense of any criterion) shape of these surfaces is important. Ap- 
parently for many substances a flat shape is the optimum from the point of view of the quality 
of the single crystal obtained. 

In this work the most simple model of the zone-melting process is considered ignoring 
convective heat transfer in the liquid phase. Use of this model is only valid in the case 
of very slow specimen movement when there is greatest interest in studying the steady-state 
process. It is assumed that the size of the ingot, parameters of the remelted substance, 
drawing rate, width of the liquid zone, and heating schedule are known. The cooling schedule 
is sought which provides a flat shape for the melting and crystallization fronts. 

i. Statement of the Problem. Let an ingot be drawn through a heater at constant veloc- 
ity v. We choose a Cartesian coordinate system (Xl, x=, x 3) connected with the heater so 
that axis xl coincides with the direction of specimen movement. It is assumed that heat 
exchange is known at the boundary of the region G' which does not move in this coordinate 
system. The temperature field T'(xl, x2, x3) , which is steady in the selected system, and 
the position of the melting Z I and crystallization Z 2 fronts are determined from the conditions 
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Fig. i 

AT' + vZ - I (T ' )  T' = ~ 0 with X ~ G'; 

T' ' [ =T O withX~E, U E,,; 
t 

(I)~ (aT'/anr~, T',  X) = .k (X) withX ~ r~. 

(1.1) 

(1.2) 

(1.3) 

(1.4) 
Here T o is melting temperature; A' is latent heat of melting; n F and nE are unit vectors nor- 
mal to surfaces F and Z; x(T') and ~(T') are thermal diffusivity and thermal conductivity 
coefficient, and 

%(T,)={%lwithT'~To, {• with T' > T0, 

�9 %2withT'<T0, • • With T'<T0; 

X = (xz, x2, x3), ~i(bT'/bn, T', X) are prescribed functions characterizing the type of heat 
exchange at the boundaries of the ingot and depending on heater construction and on the method 
of cooling the crystal; ~i may be different in different parts of the boundary of region G'. 
Normally, it is assumed that r is either linear for the first argument, or has the form 

= ar'/an -F ~T '~ + g(X), (1.5) 

where ~ is a known value; g(X) is a known function. Linear conditions (1.4) are typical 
for remelting processes in a crucible, but (1.5) with substitution in (1.4) gives the Stefan- 
Boltzmann radiation condition [i] and it is used to describe processes of crucibleless zone 
melting. 

The problem of finding T'(X) and f(X) in parts of the boundary of region G' satisfying 
(1.1)-(1.4) with prescribed El, Z 2, and f(X) in the remaining parts of the boundary relates 
to an inverse problem of the Stefan type or to a problem of controlling crystallization pro- 
cesses [3]. Applied to this problem, these terms are of equal importance. The last one 
is used below. 

A considerable number of works have been devoted to the problem of controlling crystal- 
lization processes. A review of the results and detailed bibliography are given in [3, 4]. 
The most marked success has been achieved in studying the nonsteady-state problem with one 
spatial variable. The planar and axisymmetric problem has been previously solved approxi- 

! 

mately. In Eq. (i.i) the term Txzxt [i, 5] or vTiz [6] was ignored. 

In this work the multidimensional quasisteady-state problem of zone melting is solved 
in a precise arrangement for the case when Z I and Z 2 are planes perpendicular to axis x I. 

Let E I be plane x I = ~, and E 2 be plane x I = 0. We state the control problem assuming 
that the heating schedule is specified, but the cooling schedule is sought. We introduce 
dimensionless variables, selecting as a scale for length the value of aa for velocity v, 
for temperature T o . Let 

r = (r' -- r0)/r0, y = (Yl, Y2) = 

=(uxja, =x3/a), z = u x l / a , x = ( z ,  Yl, Y2). 

I t  i s  assumed t h a t  r e g i o n  G i s  a c y l i n d e r  ( - s  ~ + s • ~, where  s > O, s > O, fl i s  
a singly-connected region in plane (Yz, Y2)- Region G is divided into three parts: Gz, 
G2, G3, and boundary F of region G is divided into five parts: Fi, i = i, ..., 5, as shown 
in Fig. i. We consider the problem 

A T ~ 2 b ~ T z = O  with x ~ G 1 ;  (1.6) 

102 



AT + 2b2Tz = 0 with x ~ G2 U Ga; ( 1 . 7 )  

T=0 with x ~ Y l U Y2; ( i .8) 

[k (z) T, lz i = A with x ~ Z~, i = t ,  2, (1.9) 

H e r e  
' �9 = { x : z  0, y ~ } ;  ~ 2 = ~ : z = m  y ~ } ;  b~ = va/(2~%i)j A = A ToX,/• ~1 = 

k, = ~Xl/(av) withz ~ (0, ~),' 
k (z)= k~ = k,x~/• ~ i t h z ~  (0, ~). 

Condition (1.4) is fulfilled at boundary F. 

It is assumed that functions r (i = 1 ..... 5), fi(x) and all of the numerical parameters 
are prescribed, and T(x), x~ G, and fi(x) with x ~F i, i > 1 are sought. The problem thus 
stated is reduced to three succesively solved problems: boundary problem (1.6), (1.4), (1.8) 
in region G i and two Cauchy problems (1.7)-(1.9) in regions G 2 and G s. Boundary problems 
of type (1.6), (1.4), and (1.8) have been satisfactorily studied, and in [7] it is possible 
to find sufficient conditions for existence of their smooth solutions. 

The Cauchy problem for elliptical equations is not generally speaking correct, but, 
as will be shown below, if the Cauchy data has the form (1.8), (1.9), then it is clearly 
resolvable in cylinders G 2 and G3, and if T(x), x ~G i is known, its solution is constructed 
in explicit form. 

It is noted that solution of (1.6)-(1.9), (1.4) after a changeover to physical variables 
does not always give a solution of the original Stefan problem (1.1)-(1.4), but only in that 
case when the inequalities 

T >0 withx ~ G1, T< 0 with x ~ G 2 U G3 (1.10) 

are fulfilled. 

On the other hand, any solution of problem (1.1)-(1.4) with planes Z i' and Z 2' after a 
changeover to dimensionless variables satisfies (1.6)-(1.10) and, therefore, infringement 
of inequality (1.10) in order to solve problems (1.6)-(1.9), (1.4) means nonexistence of 
a solution for (1.1)-(1.4) with given fi(x), a, v, s s XI, X2, <i, <2 in planes Z l' and 
Z21 

The main content of the present work consists of constructing solutions for (1.6)-(1.9) 
and obtaining the satisfactory and necessary conditions for fulfilling (1.10), i.e., solva- 
bility of the original control problem. These conditions have the form of inequalities in 
geometric characteristics of the ingot, thermophysical parameters of the remelted substance, 
and heater characteristics. 

2. Solution of the Supplementary Problem. First we consider problem (1.6)-(1.9), (1.4) 
without troubling to fulfill (1.10). The following statements occur. 

THEOREM i. Let #i, fi be such that a single solution exists 

rl(z) c (61) n C (vl) 
for problem (1.6), (1.8), (1.4). Then 

Ti(x) ~ C~+=(Gi) N Cl(Gi),  i = 2, 3, 

is found satisfying in Gi Eq. (1.7), and in Z i and Z 2 satisfying conditions (1.8), (1.9). 
Function T(x), x~ G is such that T = Ti(x) with x ~G i and 

/ j ( x )  = C j  (OT/~n D, T, x) ,  x ~  F~ (j  = 2 . . . . .  5) 

will apparently, with solution of (1.6)-(1.9), (1.4), be determined in part i. With given 
fi, r solution of (1.6)-(1.9), (1.4) is unique. 

Note i. Conditions specifying clear solvability of problems (1.6)-(1.9), (1.4) postulated 
in the condition of Theorem 1 are given in [7]. They have the form of requirement for evenness 
for fi and conditions for agreement of (1.4) and (1.8). 
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The uniqueness of the solution follows from the uniqueness of the solution for the boun- 
dary problem in G~ and the Cauchy problems in G= and G 3 [8]. Its existence is substantiated 
below by constructing in explicit form functions T= and T3 in terms of known function T I. 

Proof. First we find a solution of (1.6)-(1.9) depending only on one variable z. Func- 
tion T(z) should satisfy the equations 

T" +2biT '  = 0  with z ~  (0, n), 

T"' -~2b2T' = 0  with z ~  (0, ~) 

and conditions 

r(0) = T(=) = 0,~ 

k~T'(--t-O) - -  k 2 T ' ( - - O )  = k~T'( .~ + O) - -  k ~ T ' ( g  - -  O) = A,: 

which govern function T(z) in a unique way: 

[A[l--exp(;2b2z)]/(2bsk2) , 
T TO (z) 

[A [t - -  exp ( 2 b , ~ "  2b~z)]/(2b2k,) 

with z ~< 0. 

with z ~ (0, n L, 
with z />  ~ 

T~ does not satisfy (I.i0) and the dimensional function corresponding to it is not conse- 
quently a solution of (1.1)-(1.4). 

We shall seek a solution of (1.6)-(1.9) in the form 

T (z) + k~ 1 exp ( - -  b,z) u (x) 

T (x) ---- k~ 1 exp ( - -  blZ ) u (x) 

[T O (z) + k~ I exp (b.,n -- b2z ) u (x) 

where  u ( x )  i s  a s o l u t i o n  o f  t h e  p r o b l e m  

Au=b~u with x ~ G 1 ;  

Au=b~u with x ~ G ~  U Gs; 

with z ~< 0, 

with z ~ (0, n),~ 

with z >1 n,  

( 2 . 1 )  

( 2 . 2 )  

[uj~=0 = [u~]~== = 0 with Y ~ Q; 

u(0, y) = u(~, y) = 0 with y ~ ~; 

F (Ou/OnF,, u, x) -~- ~1 (k~q,exp ( - -  b,z) Ou/Onr~, 

T O (z) + k~ 1 exp (-- b,z) u, x) =11  (x)with x ~ r~. 

( 2 . 3 )  

( 2 . 4 )  

( 2 . 5 )  

If ~i and fl satisfy the conditions of Theorem i, then problem (2.1), (2.4), (2.5) has in 
G I a unique solution u1(x)~ C2+a(GI)NCI(GI). It is presented in the form of a Fourier 
series 

where 

u s (x) = ~ %(y) sinnz with x ~ G a ~  
?t~l 

(2.6) 

~n (Y) = ~--1 S Ul(X) sin nz dz.  
0 

I t  i s  n o t e d  t h a t  ~n(Y) s a t i s f i e s  w i t h  y ~  t h e  e q u a t i o n  

I f  r i s  l i n e a r  f o r  t h e  f i r s t  two a r g u m e n t s ,  t h e n  r e p r e s e n t a t i o n  f l ( x )  d e t e r m i n e s  f o r  e a c h  
o f  f u n c t i o n s  ~n b o u n d a r y  c o n d i t i o n s  a t  3ft. E q u a t i o n  ( 2 . 6 )  i s  in  t h i s  c a s e  a c l e a r  s o l u t i o n  
o f  p r o b l e m  ( 2 . 1 ) ,  ( 2 . 6 ) ,  ( 2 . 5 )  i n  G1. 

L e t  b2 2 - bz 2 < 1, o r ,  in  d i m e n s i o n a l  v a r i a b l e s ,  
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2 2 
%z -- X1 < 4a2/(av)L 

We define u with z < 0 and z > ~ in the following way: 

1,t= ~ n(b2--b 2 Jc n2)-l/2,n(y)sin (V (52--52 Ji- ]~2)z) 

with z < O ,  y ~ f ~ ;  

(2.7) 

( 2 . 8 )  

+ ( b ; _  + y e a .  (2.9) 

Convergence of series (2.8) and (2.9) in corresponding spaces follows from convergence 
of series (2.6). Equalities (2.3) and (2.4) are fulfilled termwise. Thus, Theorem i is 

proven. 

Note 2. For the majority of substances, XI < X2 and inequality (2.7) is fulfilled. 
If it is not infringed, then in series (2.8) and (2.9) the final number of terms changes 

b 2 /(b~ -- b~ + 2 + n 2 < sin n2)z is exchanged for sinh4(b~ -- b~ n2)z, form. In fact, if b I 2 , 
and if b l  2 + 2 - 2 n - b 2 , then for linear function z. This in no way affects the convergence 
of series (2.8), (2.9), but the qualitative properties of the solution may changed markedly. 

Note 3. The construction provided above makes sense not only for cylindrical regions 
of G, but also when GI D (0, ~) x ~, G2~ (-s 0) x fl, G a~- (~, ~ + s x ~. An example 
of a region of this type is shown by a dotted line in Fig. i. Similar regions occur in de- 
scribing processes of crucibleless zone melting. Theorem 1 is also true for them, and if 
F l does not have common points with (0, z) x 8~ z then in the conditions of the theorem it 
is possible go give up the requirement u1~ CI(GI). 

3. Accurate Solutions. The uniqueness of the solution for the original control prob- 
lem follows from Theorem i. For existence of a solution for this problem it is necessary 
and sufficient that the solution of the supplementary problem satisfies inequality (i.i0), 
of, what is the same, solution of problem (2.1)-(2.5) satisfies the equations 

u > 0 with X ~ G1; ( 3 . 1 )  

b2u < 4- A sh (b2z) = b~q)2(z) with x ~ G2; (3.2) 

b 2 u < A  sh ( b 2 g - - b z z )  = b2Ta(z) w i t h x ~ G 3 .  ( 3 . 3 )  

We construct an example of exact solution of problem (2.1)-(2.4) satisfying (3.1)-(3.3). 
Let (2.7) be fulfilled. It is assumed that 

~1 (x) = { [~b-1,1 (y) sin bz 

sin z ,1  (y) 

~b-1 ,1  (y) s in b (g - -  z) 

with z ~ O, y ~ ,  
with z ~ (0, ~), y~, 

with Z/> ~, y ~ Q .  

Here, b = (bl 2 - b22 + 1) I/2 , and ~I(Y) is a solution of the problem 

A*I = (b~ + 1) ,~  with y ~ 9 ,  

' 1  = a(y) with y ~ O ~ .  

F u n c t i o n  a ( y )  i s  p r e s c r i b e d  s u c h  t h a t  0 < ao  ~ a ( y )  ~ 1 w i t h  y ~  8~; u l ( x )  i s  a s o l u t i o n  
o f  p r o b l e m  ( 2 . 1 ) - ( 2 . 5 ) ,  w h e r e  c o n d i t i o n  ( 2 . 5 )  h a s  t h e  f o r m  

u(x) = ~a(y) s in z with y ~ Of~, z ~ (0, z~). 

The value of ~ characterizes the power of the heater. 

From the maximal principle there follows existence of a number ~m > 0 such that ~m ~ 
~z(Y) < 1 with y~ ~. If we consider a plane or axisymmetric problem (most important for 
applications), then it is possible to assume that a(y) = i and to find the explicit form 
of ~I(Y). In the axisymmetric case condition ~z(R) = i satisfies the function 

*1(r)= "o (V + ,)r)l ,o(V + 
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where I 0 is the Bessel function of the imaginary argument; r = /yz 2 + y 2. This function 
reaches its minimum value with r = 0, 

The last equation illustrates the dependence of ~m on ingot thickness. So, 

*m = o(exp (-- i (b~ + ~) R)) withR-+ ~ .  

It is evident that with ~ > 0 function u1(x) satisfies (3.1), and with ~ ~ 0 it does not. 
For any solution of problem (2.1)-(2.4) of the form ~(z)~(y), apart from u1(x), inequality 
(3.1) is infringed. 

For any function u(x), continuously differentiated in G satisfying conditions (2.4) 
and (3.1), a necessary condition for fulfillment of (3.3) in a certain right-hand neighbor= 
hood Z 1 is fulfillment of the inequality 

and the inequality 

is sufficient with e > 0. 
taneously with 

Let z 0 = ~(i + b-l). 

! 

Ou/Oz~--A=%(~) w i t h z = n - - O ,  y~f~ ,  (3.4) 

Ou/Oz<~--(l + e)Awith z = R--O,  y ~  

In the particular case being considered, (3.4) is fulfilled simul- 

~>A~I" (3.5) 

It is evident that T~ > 0, u1(z0) = 0 and inequality (3.3) 
is infringed. Consequently, E l < s o < T/b, where s 0 is the least positive root of the 
equation ~msinb(~+ s ~ = b~3(s ~ + ~). On the other hand, T~ E 0, u1(x) < 0 with 
-~/b < z < 0, and (3.2) is fulfilled. This means that solution of the control problem cor- 
responding to u = u I exists with all s < ~/b. 

Since T~ < 0 also increases uniformly with z < 0, and u I is such that with z < 0, 
y ~, u1(z, y) = - ul(-2nn/b - ~ + z, y), n = 0, i, ..., inequality (3.2) may only be in- 

f r i nged  with z ~  ----~- , --  . 

~<b~2(3n/2b) = Abb~lsh(3nb2/2b)~ (3.6) 

then (3.2) is true with all z < 0 and s may be chosen as large as one wishes. In the oppo- 
site case s < s ~ where s o is the least positive root of the equation b~2(s ~ = 8sin(bs176 
From the reasoning given it follows that 2~ < 2bs ~ < 3n. 

It is noted that conditions (3.5) and (3.6) may be fulfilled simultaneously only if 
~m -I is sufficiently small: 

~l<-~bsh(3~b2/2b)/(2b~). (3 .7)  

The hatched region in Fig. 2a, b gives values of parameters satisfying inequalities 
(3.5) and (3.6). 

In the axisymmetric case, by using an explicit form of the dependence of ~m on the radius 
of the region and the value of b I, it is possible to write (3.7) in the form 

= R < + O'v  [ b ] a 2-~ sh k--~--j j =Ro(b~, b~)~ (3 .8)  

where I0 -I is an inverse function to I0; R' is radius of a cylindrical specimen. 

In modeling the process of crucibleless zone melting, it is desirable to fulfill the 
condition of hydrodynamic stability of the liquid zone, which for a round cylinder of length 
a and radius R' has the form [9] 

2~R'/a > i. ( 3.9 ) 
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Fig. 2 Fig. 3 

The question arises of whether conditions (3.8) and (3.9) are common. It is easy to 
show that (3.8) and (3.9) may be fulfilled simultaneously if b I and b 2 are quite small. In 
Fig. 3 is a hatched region in plane (bl, b2), determined by the inequalities 

],/'t + b~ > b~ > O, 2R o (bl~ b2) > t~ 

i.e., the region of values of b I and b 2 for which there exists a solution of the u I type 
and inequalities (3.8) and (3.9) may be fulfilled simultaneously. 

If inequality (2.7) is infringed, then solution of the problem (2.1)-(2.4) having with 
x~ G I the form ~sinz ~I(Y) with x~ G 2 U G 3 either linear for z (if b2 2 = bl 2 + i), or 
proportional shb'z [if b2 2 > bl 2 + i, b' = (b2 2 - bl 2 - 1)i/=]. If ~ > 0, then these solu- 

tions satisfy (3.1) with x~G1 and (3.2) with all z < 0, y~. In order to fulfill (3.3) 
in some neighborhood El, it is sufficient to fulfill (3.5). Since b' < b2, inequality (3.3) 
is infringed with quite large z. Therefore, s may be chosen as large as one wishes, and 
s < s ~ where s ~ is the least root of the equation $~mshb's ~ = b'~3(s ~ + n), if b2 2 - 
bl 2 > i, and the equation $~ms ~ = b'~3(s ~ + ~), if b2 2 = bl 2 + i. It is easy to see that 
s 1 + ~ with ~ + ~. Therefore, it is possible to aim for the existence of a solution of 
the problem with as large s as one wishes by selecting quite high power for the heater. 

The example considered is a basis for suggesting that the case of XI > X2 is more favor- 
able from the point of view of obtaining high-quality single crystals by the zone melting 
method. 

A solution in the form u1(x) of problem (2.1)-(2.5) exists with any values of b I and 
b2, but it requires special assignment of fl. Exact solutions of (2.1)-(2.5) are considered 
below with arbitrary fl existing with b I = b 2. The latter is true if v = 0 or X1 = X2 

If b I = b2, then from (2.8) and (2.9) it follows that u(x) is a 2~-periodic, antisym- 
metric function relative to planes z = 0 and z = ~. 

If v = 0, then bl = b2 = 0 and T~ ~ 0. Therefore, if (3.1) is true with x~ GI, 
then T > 0 is true with z ~(2~, 3~) and z ~- (-2~, --~). Consequently, solution of the con- 
trol problem exists with s ~ ~, s ~ ~, and it does not exist with infringement of even 
one of these conditions. 

If v ~ 0, b I = b2, then by repeating the reasoning given above for u = u1(x) it is easy 
to show that solution of the control problem with s < ~ and s > 0 exists if (3.5) is ful- 
filled. It is possible to indicate sufficient conditions for existence of a solution with 
any Z I ~ ~ and for any s > 0 in the form of inequalities for function f1(x). 

4. Solution of the Control Problem in the General Case. Above, on the example of exact 
solutions, it has been demonstrated that although solvability of the problem (2.1)-(2.5) 
proceeds from the solvability of the boundary problem (2.1), (2.3), (2.5) in GI, for existence 
of a solution to the control problem it is still necessary to fulfill conditions of the in- 
equality type for values of s s and f1(x), Provided below is a summary of these results 
for the case of arbitrary values of b I and b 2 and arbitrary functions fm- 

First let, at the melt boundary temperature distribution be specified 

u = ~ h ( x )  w i t h  x ~ r ~ ,  

From the maximal principle it follows that (3.1) is fulfilled simultaneously with inequality 
f1(x) e 0 with x~F I. In view of the continuous differentiability of function u(x) and the 
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continuity of T~ and also inequality T~ < 0 with z < 0, fulfillment of (3.2) in a 
certain neighborhood Z 2 flows from (3.1), and sufficient condition for fulfillment of (3.3) 
in a certain neighborhood ZI will be equality (3.4), for whose verification in the general 
case it is necessary to solve the boundary problem in G I. If region S has a simple shape 
(e.g., a circle), then the problem is solved in explicit form. If the shape of ~ is more 
complex or G I is not a cylinder (see note 3), then it is possible to obtain sufficient con- 
ditions for fulfillment of (3.4) in the form of inequalities for 8 and f1(x). For this we 
consider a Dirichlet problem: 

h w  = b~w with x ~ G1, 

w = ~/1 - -  ~0~l(g) s in z with x ~ F 1, 

w = 0  w i t h x ~  E~ U E2, 

where 8o satisfies (3.5). From the maximal principle it follows that if 

~ l ( x )  > ~0a(Y) sin z, ( 4 . 1 )  

t h e n  w ~ 0 w i t h  x ~ G 1  a n d ,  t h e r e f o r e ,  w z g 0 w i t h  z = ~.  By a s s u m i n g  t h a t  w = u - u ~, we 
c o n c l u d e  t h a t  u s a t i s f i e s  ( 3 . 4 ) .  C o n d i t i o n  ( 4 . 1 )  i s  n o t  n e c e s s a r y ,  w h i c h  i s  d e m o n s t r a t e d  
by an example of the function 

u2(x) = ~th(y ) s in z q- Y~2(Y) sin 2z. 

If fl satisfies the condition of Theorem i, and, in addition, 

/i~ I==0 > 0, /i~ I~== < 0, h(x) > 0 with x ~ r. 

then fulfillment of (4.1) may be obtained by choosing sufficiently large 6. On the other 
hand, if 

~],(x) < ~la(y) sin z, ( 4 . 2 )  

w h e r e  81 s a t i s f i e s  ( 3 . 6 ) ,  t h e n  s may be  a s  l a r g e  a s  o n e  w i s h e s .  C o n d i t i o n s  f o r  ( 4 . 1 )  a n d  
( 4 . 2 )  may b e  f u l f i l l e d  s i m u l t a n e o u s l y  o n l y  i f  81 > 80 .  The  n e c e s s a r y  and  s a t i s f a c t o r y  c o n d i -  
t i o n s  f o r  f u l f i l l i n g  t h e  l a s t  i n e q u a l i t y  a r e  g i v e n  i n  p a r t  3 .  P r o v i d e d  b e l o w  i n  t h e  f o r m  
o f  a t h e o r e m  i s  a summary  o f  t h e s e  r e s u l t s  f o r  t h e  c a s e  o f  n o n l i n e a r  b o u n d a r y  c o n d i t i o n s .  

THEOREM 2.  L e t  u l ( x ) ,  x ~  G 1 b e  t h e  f u n c t i o n  d e t e r m i n e d  i n  p a r t  3 ,  8 s a t i s f i e s  ( 3 . 5 ) ,  
t h e n  6 > 0 i s  f o u n d  s u c h  t h a t ,  i f  f u n c t i o n s  Cz a n d  f z  s a t i s f y  t h e  c o n d i t i o n  o f  T h e o r e m  1 
a n d  

1]F(Oul/Onr, u 1, x) - - / l ( x ) l l  < 6, 

then solution of the problem (2.1)-(2.5) satisfies (3.1) with x~G1, (3.2) with x~ (-s 
2~0) • ~, and (3.3) with x~ (~, ~ + s176 • ~, where s ~ and s o are determined in part 
3. In addition, if 8 satisfies (3.6) and 6 is quite small, then (3.2) is fulfilled with 
all z < 0, y~ ~. 

Confirmation of Theorem 2 flows from the continuous dependence of the solution of the 
boundary problem (2.1), (2.3), (2.5) on fl, representing a solution with z < 0, z > ~, y ~  
in the form of series (2.8), (2.9), and the properties of function ul(x) established in part 3. 

Note 4. Confirmation of Theorem 2 remains in force if in its condition u1(x) is substi- 
tuted by any other exact solution of (2.1)-(2.5) satisfying (3.1)-(3.3), for example, u2(x) 
with appropriate 8 and y. 

Now we demonstrate that for any values of b I > b 2 > 0 and any functions fl, ~l we find 
s o such that with s > s o a solution of the problem being considered does not exist. 

In fact, in the opposite case this solution with z > ~ would be presented in the form 
T = T~ + k2 -lexp (b2~ - b2z)u(x), where u(x) satisfies (3.3) with z > ~, whence 

U (x) = b~-2A -~ u ([g, y) d~ > ch (b2z - -  b2st ) - -  2. 
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On the other hand, from the representation of u(x) in the form of series (2.9) it follows 
that if u1~ CI(GI), then U uniformly for z is limited with z > z, y~ ~. The proof is de- 
monstrated. It remains in force also in the case of b 2 < b I. In this way U(x) may grow 
linearly or exponentially, but more slowly than exp (b2z). Therefore, (3.3) is infringed 
with quite large z. 

5. Other Arrangements of the Zone Melting Control Problem. Consideration was given 
above to the process of heat transfer in the region fixed in a coordinate system connected 
with the heater. In real processes the specimen has finite dimensions and at instant of 
time t it occupies the region G t = (-s - vt, a+s - vt) • ~'. A molten zone of width a, 
enclosed between solid rods, may only exist for finite time t o < s If Gt ~ G with all 
t < to, i.e., s < s176 s + vt0 < s176 then construction of the solution above is 
determined in region {(X, t):t ~ (0, to), X ~Gt}, but for its realization it is necessary 
to have maintained a complex essentially nonlinear cooling regime for the ingot ends. It 
is simplest to obtain a solution of type u I with linear equations at the ends. For this 
purpose it is necessary to specify functions f4 and f5 as follows: 

]i(x) = ~h(y)[cz sin a( l ,_  3 - -  vt)/a + ~ cos ;~(li-~ - -  vt) /a] 

w i t h X  ~ F i ,  i = 4 ,  5. 

Choice of the cooling schedule as a control function makes it practically difficult 
to use the results obtained. In practice it is easier to control the heating schedule. Cool- 
ing is normally carried out by radiation, or blowing a gas, or by means of a liquid jet. 
From the uniqueness theorem for the problem being considered it follows that with an arbit- 
rarily prescribed cooling schedule for both parts of the crystal it is not generally possible 
by selecting the heating schedule to make flat melting and solidification fronts. It is 
only possible to prescribe in an arbitrary way the cooling schedule for part of the crystal 
either ahead of the melting front or behind the crystallization front. The problem of pro- 
viding a special cooling schedule for another part of the crystal remains. It is noted that 
from the results of this work it is clear that if the specimen movement rate differs from 
zero, then in prescribing an identical cooling schedule for two parts of the crystal it is 
impossible to provide a flat front for phase transitions. 

It was demonstrated in part 4 that if b I > b2, then solution of the problem of zone 
melting with flat melting and crystallization fronts only exists with s < s o , and in all 
of the examples considered s o ~ ~, whereas in carrying out production processes the length 
of the molten zone is normally much less than the length of the ingot. This limitation arose 
from the requirement for continuing the solution beyond the flat melting front. Dropping 
this require should not severely worsen the quality of the crystal obtained. The problem 
is therefore of interest of constructing a solution with a quite narrow molten zone and with 
a flat solidification front, but a curved melting front. 

By using the methods of the present work, it is also possible to construct a broad class 
of accurate nonsteady-state solutions for zone melting with flat phase transition fronts. 
These solutions require specification of agreed starting data in the liquid and solid phases. 

Under these conditions, when exact solutions of the stated problem do not exist or heat- 
transfer schedules corresponding to them are impractical for any reason, a solution should 
be sought with a front shape close to flat using methods of optimum control theory. In [3, 
4] this approach was applied to the problem of controlling crystallization processes in which 
the control functions were not connected with the shape of the phase transition. 

The author expresses his thanks to V. D. Pukhnachev for consideration of the work. 

. 

2.  
3.  

4 .  

LITERATURE CITED 

L. I. Rubinshtein, Stefan's Problem [in Russian], Zvaigzne, Riga (1967). 
V. Pfann, Zone Melting [in Russian], Mir, Moscow (1970). 
K. H. Hoffmann and M. Niezgodka, "Control of parabolic systems involving free boundaries," 
in: Free Boundary Problems. Theory and Applications, Boston (1983). (Res. Noted in 
Math., 179, part 2). 
I. Pawlow, "Optimal control of nonlinear evolutional problems with applications to pro- 
cesses involving free boundaries," in: Constructive Aspects of Optimization, Warszawa 
( 1 9 8 5 ) .  

109 



. 

. 

7. 

8. 

N. L. Gold'man, A. B. Uspenskii, et al., "Numerical method for determining the boundary 
regime at the surface of a continuous ingot from the solidification front profile," 
Inzh. Fiz. Zh., 27, No. 4 (1974). 
R. Segal, "Solution by the Cauchy method of the problem of the solidification boundary 
during continuous casting of steel," Teploperedacha, !05, No. 3 (1983). 
O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and 0uasilinear Equations of the El- 
liptical Type [in Russian], Nauka, Moscow (1973). 
R. Lattes and J.-L. Lyons, The 0uasirotation Method and Its Application [in Russian], 
Mir, Moscow (1970). 

ii0 


